Les vecteurs M.Rolet

1 Vecteurs dans le plan

1.1 Définition et notation

Définition 1. Un vecteur est caractérisé par :
— Une direction (droite support)
— Un sens (orientation sur cette droite)

— Une norme ou longueur (distance)

Le vecteur qui va du point A au point B se note A§.
On note aussi les vecteurs avec une lettre surmontée d’une fleche : u, U, etc.

B- direction

Remarque 1. — L’origine du vecteur zﬁ est A

— L’extrémité du vecteur A§ est B
15+ 5
— AB # BA (sens opposés)

1.2 Vecteur nul

Définition 2. Le vecteﬂ‘> nul, noté 0, est le vecteur dont Uorigine et Uextrémité sont confondues.
Pour tout point A : AA =0
Le vecteur nul a une norme nulle et n’a pas de direction définie.

1.3 Egalité de vecteurs

Définition 3. Deuz vecteurs B et C@ sont égaux s’ils ont :
— La méme direction
— Le méme sens

— La méme norme

On note : 1@ = (713

Propriété 1. 1@ = @ si et seulement si ABDC' est un parallélogramme (éventuellement aplati).
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1.4 Norme d’un vecteur

Définition 4. La norme d’un vecteur ﬁ, notée HEH ou AB, est la longueur du segment [AB].
C’est un nombre positif ou nul.

Propriété 2. Dans un repére orthonormé, si A(xa;ya) et B(zp;yp), alors :

IAB| = AB = /(x5 — 24)° + (5 — ya)?

Exemple 1. Calculer la norme de AB avec A(1;2) et B(4;6).

IAB| = VA 12+ (627 =v9116=v25=5

2 Opérations sur les vecteurs

2.1 Addition de vecteurs
Définition 5 (Relation de Chasles). Pour tous points A, B et C :

AB +BC = AC

Cette relation permet d’additionner des vecteurs « bout a bout ».

@/)B@

Propriété 3 (Régle du parallélogramme). Si ABCD est un parallélogramme, alors :

AB + AD = AC

Exemple 2. Simplifier : /@ + B? + @

:(@JrB?)Jr@:ﬁJrc‘*ﬁ:ﬁ

2.2 Vecteur opposé

—
Définition 6. Le vecteur opposé de /@, noté —jﬁ, est le vecteur BA.
Il a:
— La méme direction que E
— Le sens opposé a f@

— La méme norme que 1@
—
Propriété 4. — BA= _AB
— AB+BA=10

— |AB| = || - 4B|
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2.3 Soustraction de vecteurs

Définition 7. La différence de deux vecteurs est définie par :
AB — AC = AB + (—AC) = AB+CA=CB

Propriété 5. Pour tous points A, B et C' :

AB—AC =CB

Exemple 3. Simplifier : B — @
=AB+ D
Si on cherche a faire apparaitre une relation de Chasles, on peut écrire :
:@—l—ﬁzﬁqtﬂ—l—fl (si besoin)

2.4 Multiplication par un réel
Définition 8. Soit @ un vecteur non nul et k un nombre réel.
Le vecteur ki est le vecteur :
— De méme direction que U
— De sens identique st k > 0, opposé st k <0
— De norme |k| x |||

Sik=0ou@=0, alors ki = 0.

£y

Propriété 6. Pour tous vecteurs U et U, et tous réels k et k' :
— k(U + V) = ki + kv
— (k+K)u=ku+FKu
— k(K'u) = (kK)u
— 1lxu=u
— |kdl] = |k| x [a]]

3 Colinéarité

3.1 Définition
Définition 9. Deux vecteurs u et U sont colinéaires s’il existe un réel k tel que :
v=kiu ou u=kv

Deuz vecteurs colinéaires ont la méme direction.

Remarque 2. — Le vecteur nul est colinéaire a tous les vecteurs
— Si1 U et U sont colinéaires de méme sens : k > 0

— Si U et U sont colinéaires de sens opposés : k < 0

3
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3.2 Critére de colinéarité avec les coordonnées

—

/
2 s N — x 'T . . . .
Propriété 7. Dans un repére, deuzr vecteurs u ( et v |, | sont colinéaires si et seulement si :
) )

xy —2'y=0

Cette expression s appelle le déterminant des vecteurs u et v.

/
Méthode 1 (Vérifier la colinéarité). Pour vérifier si 4 (g) et U (5,) sont colinéaires :

1. Calculer xy' — x'y
2. Sixy —x'y =0 : les vecteurs sont colinéaires

3. Sixy —x'y #0 : les vecteurs ne sont pas colinéaires

Exemple 4. 1) 4 g et v (g) sont-ils colinéaires ¢

2x6—-4x3=12-12=0

Oui, ils sont colinéaires. En effet : v = 2u
2) ud (;) et v (g) sont-ils colinéaires ¢

I1xb—-—3x2=5—-6=—-1+#0
Non, ils ne sont pas colinéaires.

3) i _23 et v _64 sont-ils colinéaires ?
(—3)x (“4) —6x2=12-12=0
Oui, ils sont colinéaires. En effet : v = —2u

3.3 Applications de la colinéarité

Propriété 8 (Points alignés). Trois points A, B et C' sont alignés si et seulement si les vecteurs zﬁ
et 1@ sont colinéaires.

Propriété 9 (Droites paralleles). Deux droites (AB) et (CD) sont paralléles si et seulement si les

vecteurs 1@ et @ sont colinéaires.
Exemple 5. Les points A(1;2), B(3;5) et C(5;8) sont-ils alignés ?

P (52) = ()
(35) = (5

Déterminant : 2 x6—-4x3=12-12=0
Les vecteurs sont colinéaires, donc les points sont alignés.

4 Repérage dans le plan

4.1 Coordonnées d’un vecteur
)

Définition 10. Dans un repére (O;i,7), tout vecteur U peut s’écrire de maniére unique :
uU=xt+yj
Les nombres x et y sont les coordonnées du vecteur u dans le repére.

On note : U (;) ou U(z;y)
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Propriété 10. Si A(xa;ya) et B(zp;yp) sont deux points du repére, alors :
AB (Tr A
Y —Ya
Exemple 6. Dans un repére, A(1;3) et B(4;7).

4—-1 3
(i23) - ()
4.2 Opérations avec les coordonnées

/

Propriété 11. Dans un repére, si i <§) LU (5,) etk eR:
Addition :

Multiplication par un scalaire :

Norme :
il = Va2 + y?
Exemple 7. Soit u (g) et v (_41)
Lo (24 (-1)\ _[1
1)u+v_( e >_ 7)

(222~
e (1)- )

4) i = V22 +32=v4+9=1+13

4.3 Coordonnées du milieu
Propriété 12. Si A(za;ya) et B(xzp;yg), alors le miliew I du segment [AB] a pour coordonnées :

I TA+2Zp YA+ YB
2 ’ 2

Exemple 8. Déterminer les coordonnées du milieu I de [AB] avec A(2;5) et B(6;1).
I (2 +6 5+1

T;T) = 1(4;3)

5 Vecteurs dans ’espace

5.1 Repérage dans ’espace

Définition 11. Dans l’espace muni d’un repére (O; _),]ﬁ E) tout vecteur u s’écrit de maniére unique :

- -

+yj+ zk

8

On note : ud |y

N
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Propriété 13. Si A(xa;ya; za) et B(xp;yp;zp), alors :

Tp —TA
,ﬁ Y — Ya
ZB — RA

5.2 Opérations dans ’espace

x x
Propriété 14. Dans un repere de Uespace, sii |y |, v |y | etk eR :
z z

Addition :

<y
+
<y
Il
<
+
Q\

Multiplication par un scalaire :

kz

dll = va? + y? + 22
Colinéarité : U et U sont colinéaires si et seulement si 3k € R : U = ku
Exemple 9. Dans l’espace, A(1;2;—1) et B(4;0;3).
4—-1 3
AB| o-2 | =[-2

3—(=1) 4
JAB| = /3 + (22 1 £ =974716= 29

Norme :

6 Produit scalaire

6.1 Définition

Définition 12. Le produit scalaire de deux vecteurs u et v est le nombre réel noté u-v défini par :

—

N

-0 = [|a] > || x cos(d, 7)

ou (i, V) est l’angle entre les deux vecteurs.

Remarque 3. — Siu=0o0uv =0, alorsu-v =0

—

e

6.2 Calcul avec les coordonnées

x/
/

y) (plan) :

Propriété 15. Dans un repére orthonormé, si u S;) et U(

U=z +yy

8

Dans l’espace, si u

INEENS
)
~
4

IS

-0 =ax +yy + 22
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(2 (-1
Exemple 10. u (3) et v ( 4 >

U-U=2x(-1)+3x4=-2+12=10

6.3 Propriétés du produit scalaire

Propriété 16. Pour tous vecteurs u, v, W et tout réel k :

- =U-U (commutativité)

a
— U (V+ W) =u-U+u- W (distributivité)
( g
— U-u=|u

6.4 Orthogonalité

Définition 13. Deuz vecteurs i et ¥ sont orthogonauz (perpendiculaires) si et seulement si :
u-v=0

On note : 4 L U

S (3 (2
Exemple 11. u(2 et v _3
U-T=3%x2+4+2x%x(-3)=6—-6=0

Les vecteurs sont orthogonauz.

7 Applications

7.1 Exercices sur les vecteurs du plan

Application 1. Ezxercice 1 : Simplifier l'expression vectorielle suivante :
AB + BC - DC

Solution :

4B + BC — DC
— AC - DC (relation de Chasles)
— AC+CD

=A

Ap%cation 2. Exercice 2 : Dans un parallélogramme ABCD), exprimer A‘& en fonction de jﬁ
et AD.

Solution :
Par la regle du parallélogramme :

AC —AB+A
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7.2 Exercices avec coordonnées

Application 3. Ezxercice 3 : Soit i (_42> et v (;)

Calculer :
a) i+v

o (441 (5
“+”_(—2+3>_<1>

b) 3il — 20

- L (12 2\ (10
3u—20—<_6)—(6)_(_12>

c) ||all

@] = /2 + (22 =16+ 4=v20=25
d)i-v

G- T=4x1+(-2)x3=4—6=-2

7.3 Exercices de géomeétrie

Application 4. Ezxercice 4 : Les points A(1;2), B(3;—1), C(7;=7) et D(5;—4) forment-ils un
parallélogramme ¢

Solution :

ABCD est un parallélogramme si et seulement si /@ = ﬁ

A
() ()

AB + DC

Donc ABCD n’est pas un parallélogramme.

8 Tableaux récapitulatifs
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8.1 Opérations vectorielles

Opération Géomeétrie Coordonnées

z+ 7

Addition Relation de Chasles

y+y

kx
Multiplication | ku méme direction

ky

Norme Longueur Va2 +y?

Colinéarité Méme direction xy —x'y=0
Produit scalaire ||| || 7| cos @ '+ yy'
Orthogonalité ul v xx' +yy =0

8.2 Formules essentielles

Relation de Chasles E + B? = /@
Vecteur opposé Ezl = —1@
Coordonnées de zﬁ e

Y — YA
Milieu de [AB] I <“ ‘2L o5 A JQF yB)
Distance AB V(s —2a)?+ (yp — ya)?
Colinéarité xy —x'y=0




